Algılayıcılar (Sensors-Transducers)(Geniş Anlatımlı) (Alıntı)

+ Yorum Gönder
Elektronik ve Elektronik Bölümü Bölümünden Algılayıcılar (Sensors-Transducers)(Geniş Anlatımlı) (Alıntı) ile ilgili Kısaca Bilgi
  1. 1
    Mattet
    Usta Üye
    Reklam

    Algılayıcılar (Sensors-Transducers)(Geniş Anlatımlı) (Alıntı)

    Reklam



    Algılayıcılar (Sensors-Transducers)(Geniş Anlatımlı) (Alıntı)

    Forum Alev
    1 GİRİŞ
    Algılayıcılar ("duyarga" da denmektedir) fiziksel ortam ile endüstriyel amaçlı elektrik/elektronik cihazları birbirine bağlayan bir köprü görevi görürler. Bu cihazlar endüstriyel proses sürecinde kontrol , koruma ve görüntüleme gibi çok geniş bir kullanım alanına sahiptirler.
    Günümüzde üretilmiş yüzlerce tip algılayıcıdan söz edilebilir. Mikro elektronik teknolojisindeki inanılmaz hızlı gelişmeler bu konuda her gün yeni bir buluş ya da yeni bir uygulama tipi geliştirilmesine olanak sağlamaktadir
    Teknik terminolojide Sensor ve Transducer terimleri birbirlerinin yerine sık sık kullanılan terimlerdir. Transducer genel olarak enerji dönüştürücü olarak tanımlanır. Sensor ise çeşitli enerji biçimlerini elektriksel enerjiye dönüştüren cihazlardır. Ancak 1969 yılında ISA (Instrument Society of America) bu iki terimi eş anlamlı olarak kabul etmiş ve "ölçülen fiziksel özellik, miktar ve koşulların kullanılabilir elektriksel miktara dönüştüren bir araç" olarak tanımlamıştır.
    Endüstride en sık kullanılan algılayıcılar için ölçülen büyüklükler ve çıkış büyüklüklerine ait bilgiler Tablo 1'de verilmiştir.

    http://www.e3tam.com/destek/picture/algilayici_1.JPG

    2 ALGILAYICILARIN SINIFLANDIRILMASI
    Algılayıcıları birbirinden farklı birçok sınıfa ayırmak mümkün. Ölçülen büyüklüğe göre, çıkış büyüklüğüne göre, besleme ihtiyacına göre vb… Aşağıda bu sınıflardan bazılarına değinilecektir.
    2.1 Giriş Büyüklüklerine Göre
    Algılayıcılarla ölçülen büyüklükler 6 gruba ayrılabilir. Bunlar;
    1. Mekanik : Uzunluk, alan, miktar, kütlesel akış, kuvvet, tork (moment), Basınç, Hız, İvme, Pozisyon, Ses dalgaboyu ve yoğunluğu
    2. Termal : Sıcaklık, ısı akısı
    3. Elektriksel : Voltaj, akım, çarc, direnç, endüktans, kapasitans, dielektrik katsayısı, polarizasyon, elektrik alanı ve frekans
    4. Manyetik : Alan yoğunluğu, akı yoğunlugu, manyetik moment, geçirgenlik
    5. Işıma : Yoğunluk, dalgaboyu, polarizasyon, faz, yansıtma, gönderme
    6. Kimyasal : Yoğunlaşma, içerik, oksidasyon/redaksiyon, reaksiyon hızı, pH miktarı
    2.2 Çıkış Büyüklüklerine Göre
    Öte yandan analog çıkışlara alternatif olan dijital çıkışlar ise bilgisayarlarla doğrudan iletişim kurabilirler. Bu iletişimler kurulurken belli bazı protokoller kullanılır. Bunlardan seri iletişim protokollerine, aşağıda kısaca değinilmiştir.

    RS232C: Bu protokol başlangıçta telefon veri iletişimi için tasarlanmıştır. Daha sonra birçok bilgisayar sistemi bunu sıkça kullanmaya başlamış ve sonuçta RS232 standart bir iletişim protokolu haline gelmiştir. RS232C'nin çalışması tek sonlamalıdır(single ended). Lojik 1 = -15,-3 arasında ve lojik 0 = +3,+15 arasındadır. Algılayıcılar verileri bitler halinde ve seri iletişim protokoluna uygun olarak bilgisayara gönderir. RS232C bir single ended arayüze olduğundan alıcı ve gönderici arasındaki uzaklık dış çevreden gelen olumsuz faktörlerin (EMI,RFI enterferanslar) azaltılması açısından kısa tutulmalıdır.
    RS422A : Bu protokol Differantial ended bir arayüze sahiptir. Alıcı verici arasındaki uzaklık yeterince en uzak seviyededir. Hatlarda bu mesafe sebebiyle olabilecek zayıflama 200mV seviyesine kadar azalsa da sistem iletişime devam eder. Diferansiyel ara birim sayesinde sinyaldeki zayıflama ihmal edilebilir düzeye çekilir ve oldukça yüksek bir veri hızıyla haberleşme sağlanabilir. Algılayıcı ve bilgisayar arasındaki iletişimde Twisted Pair (Bükülmüş kablo) kullanıldığından dış etkilerden etkileşim azdır.
    RS485 : Standart 422A protokolu genişletilerek oluşturulmuş bir protokoldür. Bu protokol ile birlikte çalışabilen 32 adet alıcı vericinin tek bir kabloyla veri iletişimi sağlanabilir. RS485 protokolü kablodaki iletişim problemlerini ortadan kaldırmaktadır.
    Çıkış AraBirim Tipi Max Kablo Uzunluğu Max Veri hızı İletişim Tipi
    RS232C Single Ended Voltage 15 mt 20Kbps Point to point
    RS422A Differantial Voltage 1,2 Km 10Mbps Point to point
    RS485A Differantial Voltage 1,2 Km 10Mbps MultiDrop (32 Node)
    Table 2: Seri iletişim protokollerinin karşılaştırılması
    2.3 Besleme İhtiyacına Göre
    Algılayıcılar besleme ihtiyacına göre iki sınıfa ayrılabilir. Bunlar ;
    2.3.1 Pasif Algılayıcılar
    Hiçbir şekilde dışardan harici enerji almadan (besleme gerilimine ihtiyaç duymadan) fiziksel ya da kimyasal değerleri bir başka büyüklüğe çevirirler. Bu algılayıcı tipine örnek olarak Termocouple (T/C) ya da anahtar gösterilebilir. T/C aşağıda etraflıca anlatılacaktır. Anahtar ise bilindiği gibi mekanik bir hareketi elektriksel bir kontağa dönüştürmektedir.
    2.3.2 Aktif Algılayıcılar
    Çalışmaları için harici bir enerji beslenmesine ihtiyaç duyarlar. Bu algılayıcılar tipik olarak zayıf sinyalleri ölçmek için kullanılırlar. Aktif algılayıcılarda dikkat edilmesi gereken nokta giriş ve çıkışlardır. Bu tip algılayıcılar dijital ya da analog formatta elektriksel çıkış sinyali üretirler. Analog çıkışlılarda, çıkış büyüklüğü gerilim ya da akımdır. Gerilim çıkışı genellikle 0-5V aralığında oldukça yaygın kullanılmaktadır. Ancak 4-20mA akım çıkışı da artık endüstride standart haline gelmiştir. Bazı durumlarda 0-20mA akım çevrimi kullanılmaktadır Ancak endüstride çoğu zaman hatlarda meydana gelen bozulma kopma gibi durumlarda sistemin bu durumu kolay algılaması ve veri iletişiminin sağlıklı yapılabilmesi için 4-20mA daha yaygın kullanılır. Çok eski algılayıcılar 10-50 mA akım çıkışlarına sahiptirler. Endüstride en yaygın kullanılan 4-20 mA çevrim tipinin kullanımı bazı özel durumlar gerektirmektedir. Bu noktalar;
    " Algılayıcıların yerleştirildiği uzak noktalarda elektrik besleme geriliminin olmaması gereklidir.
    " Algılayıcılar gerilim sinyalinin sınırlı olabileceği durumlarda tehlikeli uygulamalarda kullanılmalıdırl
    " Algılayıcıya giden kablolar iki ile sınırlanmalıdır.
    " Akım çevrimsinyali göreceli olarak gürültü geriliminin ani sıçramalarına karşı korumalıdır. Ancak bunu uzun mesafe veri aktarımınında yapamaz.
    " Algılayıcılar, ölçüm sisteminden elektriksel olarak izole edilmelidir.



  2. 2
    Mattet
    Usta Üye

    --->: Algılayıcılar (Sensors-Transducers)(Geniş Anlatımlı) (Alıntı)

    Reklam



    Dünyada en yaygın kullanım alanı bulan sıcaklık ve titreşim ölçümleri hakkında kısa bilgiler vererek algılayıcı konusuna devam edelim.
    3 DİNAMİK ÖLÇÜMLER İÇİN ALGILAYICILAR
    3.1 İvme Ölçerler
    http://www.e3tam.com/destek/picture/algilayici_2.JPG
    İvme ölçerler, genel amaçlı mutlak hareket ölçümlerinde, şok ve titreşim ölçümlerinde kullanılırlar.Bir yapının ya da bir makinanın ömrü,çalışma sırasında maruz kaldığı ivmenin şiddeti ile orantılıdır. Bir yapının çeşitli noktalarındaki titreşimin genliği ve fazı, bir modal analiz yapılabilmesine izin verir. Yapılacak olan bu analiz sonucunda dinamik olarak çalışacak parçaların çalışma modları belirlenerek tüm sistemin dinamik karakteri ortaya konabilmektedir.
    Sismik ivmeölçerler ile yer, bina, köprü üzerinde deprem, inşaat, madencilik çalışmaları, büyük nakliye vasıtaların yol açtığı titreşimler ölçülebilir. Yüksek frekanslı ivmeölçerler ile çarpma testleri, çok yüksek devirli motorların testleri yapılabilir. İvmeölçerler ölçme tekniğine görede farklı sınıflara ayrılırlar. Konuyla ilgili ayrıntı ilerki sayfalarda belirtilmiştir.
    3.1.1 Piezoelektrik İvme ölçerler
    Piezoelektrik ivmeölçerler çok düşük frekanslı sismik uygulamalardan, çok yüksek frekansda doğrusal çalışma aralığı gerektiren çarpma testlerine kadar birçok ölçme uygulamasında kullanılan, küçük boyutlu, yüksek sıcaklık aralığında çalışabilen, endüstriyel standartlarda kılıf içinde yapılandırılmış transdüserlerdir.
    Kuvarz ya da seramik kristaller bir kuvvet altında kaldığında picocoulomb seviyesinde elektrik yükü üretirler. Bu elektrik yükünün kristal üzerindeki değişimi yer çekimi ivmesinin değişimi ile doğru orantılıdır. İvmeölçerlerdeki sismik kütlenin ivme altında maruz kaldığı atalet kuvveti piezoelektrik kristale etkir ve ivme ile doğru orantılı bir elektrik sinyali çıkışı verir. Bir yongaya (Mikro Elektronik devre/chip) sahip Piezoelektrik ivmeölçerlerin içinde sinyali taşınabilir voltaj sinyaline çeviren bir sinyal koşullayıcı devre vardır (Integrated Electronics Piezoelectric - IEPE). Bu tip Algılayıcılar gürültüden minimum etkilenirler. Üzerinde çevirici elektronik devre olmayan (Charge Mode) Algılayıcılar harici bir çevirici (Charge Amplifier) ile kullanılırlar. Charge Mode Algılayıcılar yüksek sıcaklıktaki uygulamalarda kullanılmak için idealdirler.
    3.1.2 Kapasitif İvmeölçerler
    Kapasitif ivmeölçerler düşük seviyeli ve düşük frekanslı titreşimleri, statik ivmeleri ölçmede kullanılırlar. Karşılıklı yerleitirilmiş kapasitör şeklinde çalışan iki plaka arasındaki kapasitansın değişmesi prensibi ile ölçüm yaparlar. Bu plakalar arasındaki mesafe ve dolayısı ile kapasitans ivme altında değişir ve ivme ile doğrusal bir sinyal doğururlar. Bu tip Algılayıcılar özel bir sinyal koşullama gerektirmezler. 12VDC ya da 24 VDC ile beslenmek sureti ile çalışırlar. Özellikle robotik, otomotiv sürüş kalite testleri, bina dinamiği ölçümü gibi yerlerde kullanılırlar.
    3.2 Basınç Algılayıcıları

    3.2.1 DİNAMİK BASINÇ ALGILAYICILARI
    Dinamik basınç algılayıcıları, piezoelektrik etkiyi kullanırlar. 400kHz gibi çok yüksek bir frekans aralığında doğrusal çıkış verebilir ve büyük statik basınç değerlerinin üzerindeki yüksek frekanslı fakat küçük genlikli dalgalanmaları ölçebilirler.
    Endüstride pompa basıcının, hidrolik ve pnömatik basınç hatlarının izlenmesi ve kontrolü; akış kaynaklı titreşimlerin incelenmesi, kavitasyon, su darbesi, pulsasyon, akustik ölçümler, havacılık testleri, valf dinamiği, patlayıcı ve silah testleri, içten yanmalı motor testleri bu algılayıcılar kullanılarak yapılabilmektedir.

    3.2.2 STATİK BASINÇ ALGILAYICILARI
    Hassas rezistif diyaframı kullanan bu Algılayıcılar endüstride statik basıncın sürekli olarak izlenmesi gereken uygulamalar için geliştirilmiştir. Tank seviyelerinin izlenmesinde, endüstriyel proseslerin geri besleme kontrol sistemlerinde ve ısıtma soğutma klimatizasyon sistemlerinde kullanılmaktadır.
    3.3 Dinamik Kuvvet Algılayıcıları
    Piezoelektrik etkiyi kullanan kuvars kuvvet algılayıcıları, sıkışma, çekme gerilmeleri, darbe, tepki ve etki kuvvetlerini ölçen sağlam, uzun ömürlü, dinamik algılayıcı elemanlardır. Uygulama alanları arasında; tüm soğuk ve sıcak plastik şekil verme işlemleri, pres kuvveti ölçümü, talaşlı imalatlar, kaynak işlemleri ve test işlemleri gelmektedir.
    Üzerine uygulanan kuvveti birbirine dik üç eksende ayrı ayrı veren üç bileşenli kuvvet algılayıcıları özellikle takım tezgahlarının kesici uçlarının uyguladığı kuvvetin ölçülmesinde, kuvvet dinamometresi uygulamaları, biyomekanik uygulamalarında kullanılmaktadır.
    3.3.1 PİEZOELEKTRİK ÖZELLİK
    "Piezo" kelimesi Yunanca sıkmak anl!!!!! gelmektedir. Piezoelektrik elemanlar bir dış kuvvet altında kaldıkları zaman, karşılıklı yüzeyleri üzerinde bir elektrik yükü oluşur.
    Şekil 1'de gösterilen büyük daireler silikon atomlarını, küçük olanlar ise oksijen atomlarını belirtmektedir. Doğal ya da işlenmiş kuvartz kristali en hassas ve kararlı piezoelektrik malzemelerden biridir. Doğal malzemelerin yanı sıra yüksek teknolojilerle üretilen polikristalin ve piezoseramik gibi malzemeler de yüksek elektrik alana maruz bırakıldıklarında piezoelektrik özellik kazanmaları sağlanabilmektedir. Bu kristaller çok yüksek değerde yük çıkışı üretirler. Bu özellikleri sayesinde de özellikle düşük genlikli sinyallerin ölçülemesinde kullanılırlar. Tablo 1'de piezoelektrik malzemelerin karşılaştırması verilmiştir.
    http://www.e3tam.com/destek/picture/algilayici_4.JPG
    Şekil 1

    http://www.e3tam.com/destek/picture/algilayici_3.JPG
    Tablo 1

    Şekil 2'de gözüktüğü gibi piezoelektrik Algılayıcılarda farklı boyut ve şekillerde piezoelektrik malzemeler kullanılabilir.
    1. Basma kuvvetini temel alan tasarım yüksek bir rijitlik göstermektedir. Bu özelliği sayesinde yüksek frekanslı basınç ve kuvvet ölçümlerinde kullanılmaktadır. Olumsuz bir özelliği sıcaklık değişimlerine gösterdiği hassasiyettir.
    2. Basit bir tasarım olan eğilmeli (flexural) tasarım, düşük frekans aralığı ve düşük darbe dayanımı nedeni ile dar bir kullanım sahasına sahiptir.
    3. Kayma gerilmesi (shear) tasarımı geniş frekans aralığı, düşük eksen kaçıklığı hassasiyeti, ısıl değişimlerden az etkilenmesi gib olumlu özellikleri sayesinde ivmeölçerlerde yaygın olarak kullanılmaktadır.
    http://www.e3tam.com/destek/picture/algilayici_5.JPG
    Şekil 2

    104 E9 [N/m2] gibi birçok metale yakın bir sertlik derecesine sahip olan piezoelektrik malzemeler, çok küçük bir yerdeğişimi altında bile büyük bir çıkış verirler. Bir diğer deyişle piezoelektrik malzemeler fiziksel olarak kalıcı bir değişime uğramazlar. Bu sebeple piezoelektrik algılayıcılar çok sağlam bir kılıfta korunur ve geniş bir genlik aralığında mükemmel bir doğrusallık gösterirler. Doğru seçilmiş bir sinyal koşullama sistemi ile birlikte kullanıldığında, bu tip algılayıcılar 120 dB gibi çok geniş bir genlik aralığına sahip olmaktadırlar. Uygulama açısından bu özellik, aynı piezoelektrik ivm ölçer ile 0,0001 g'den 100 g'e kadar geniş bir aralıkta ölçüm yapılabilir anl!!!!! gelmektedir:
    Piezoelektrik malzemlerden bahsederken üzerinde önemle durulması gereken diğer bir nokta da bunların sadece dinamik ya da diğer bir değişle değişen durumları ölçebildiğidir. Piezoelektrik algılayıcılar, yerçekimi ivmesi, barometrik basınç, ağırlık kuvveti gibi statik, yani zamanla değişmeyen büyüklükleri ölçemezler. Bu sabit olaylar ilk anda bir çıkış doğururlar fakat bu sinyal, piezoelektrik malzemenin ve algılayıcının bağlı olduğu elektronik devrenin zaman sabitine bağlı olarak, zamanla yok olacaktır. Bu zaman sabiti, cihazın üzerindeki kapasitans ve direncin oluşturduğu, birinci dereceden yüksek frekans geçiren filtreden kaynaklanmaktadır. Bu filtre cihazın ölçebileceği en düşük frekansı belirlemektedir.

    3.3.2 Algılayıcının yapısı
    Kuvvet, basınç ve ivme algılayıcılarının yapıları Şekil 3'te görülmektedir. Bu şekil üzerinde gösterilen gri renkli kısımlar test edilen cismi, mavi renkli kısımlar algılayıcı muhafazasını, kırmızı kısımlar piezoelektrik malzemeyi, siyah kısımlar şekil değişimi gösteren kristalin üzerinde oluşan yükün toplandığı elektrodları ve sarı renkli kısım da elektrik yükü şeklindeki sinyalin voltaj sinyaline çevrildiği mikro-devreyi belirtmektedir. İvmeölçerde ayrıca yeşil renkle gösterilen sismik kütle vardır. Görüldüğü gibi, bu üç tip algılayıcının iç yapıları birbirinden çok farklı değildir. Hareket ölçen ivme ölçerledeki kristallerin üzerine oturan sismik kütle, algılayıcının üzerine takıldığı cismin hareketini izlemek zorundadır. Kristallerin üzerine etkiyen kuvvet Newton'un İkinci Hareket Kanunu uyarınca, ( F=m * a ) kolayca hesaplanır. Kuvvet ve basınç algılayıcıları neredeyse aynı özellikleri taşırlar. Aralarındaki temel fark basınç algılayıcılarının basıncı toplamak için bir diyafram kullanmasıdır.
    http://www.e3tam.com/destek/picture/algilayici_6.JPG
    Şekil 3

    3.3.3 Sinyal Koşullama
    http://www.e3tam.com/destek/picture/algilayici_7.JPG
    Algılayıcı eleman elektriksel bir çıkış ürettikten sonra, bu sinyalin osiloskop, analizör, kayıt edici, gibi bir cihaz tarafından okunabilmesi için koşullanması gerekmektedir. Bu sinyal koşullama temel olarak aşağıdaki işlevlere sahiptir.
    " Sinyalin taşınabilir ve ölçülebilir düşük empedanslı voltaj sinyaline çevrilmesi
    " Sinyal güçlendirilmesi ve zayıflatılması
    " Filtreleme
    Bu sinyal koşullama iki farklı şekilde yapılabilir. (Şekil 4)
    " IEPE algılayıcılarda algılayıcının içindeki mikroelektronik devre yardımıyla
    " Yük modu algılayıcılarda algılayıcının dışında takılan bir çevirici yardımıyla
    IEPE olarak tanımlanan algılayıcılar ICP® tescil markasıyla PCB Piezotronics firması tarafından1967 yılında geliştirilmiştir. Algılayıcının içindeki minyatür devreler yük ya da voltaj amplifikatörleridir. 18-30 VDC arasında değişen bir besleme voltajı ve 2mA sabit akım kaynağı ile beslenirler. Bu sistemin temel özellikleri aşağıda sıralanmıştır.
    " Algılayıcıya monte edilmiş mikroelektronik devreler, birçok sinyal okuma cihazı ile uyumlu, düşük empedanslı voltaj sinyali üretmektedir.
    " Kanal başına maliyeti düşüren, kullanımı kolay sabit akım sinyal koşullayıcısı gerektirirler.
    " Sinyal uzun kablolama ile zorlu ortamlardan, sinyal
    kalitesinde bir düşme yaşanmadan aktarılabilir.
    " Çalışma sıcaklığı tipik olarak 120 °C, (en fazla 155 °C) ile sınırlandırılmıştır.
    " Kolay bulunabilen koaksiyel kablolar ile çalışabilir. Ekonomiktir.
    " Hassasiyet ve frekans aralığı gibi özellikleri besleme gerilminden bağımsız olarak her algılayıcı için sabittir.
    Yük tipi algılayıcılar, mekanik ve algılayıcı eleman olarak ICP® algılayıcılardan farklı değildir. Tek farklılıkları sinyal koşullama devresinin algılayıcının dışında olmasıdır. Yük tipi algılayıcılar genellikle yüksek sıcaklığın var olduğu uygulamalarda kullanılırlar. Bu algılayıcıların özellikleri aşağıda sıralanmıştır.
    " Algılayıcının çıkışı mutlaka koşullanması gereken yüksek empedanslı bir çıkıştır.
    " Harici bir sinyal koşullama gerekmektedir.
    " Algılayıcının çıkışındaki sinyal, kabloların hareket etmesinden, elektromanyetik sinyallerden, radyo frekans dalga girişimlerinden kaynaklanan gürültülere açıktır.
    " 540 °C gibi yüksek sıcaklıklarda çalışabilirler.
    " Düşük gürültülü özel kablolara ihtiyaç duyulur.
    " Algılayıcının hassasiyet, frekans aralığı gibi özellikleri değişkendir. Bu özellikler kablo uzunluğu ya da sinyal koşullayıcının ayarları ile değişebilir.







  3. 3
    pdewil
    Yeni Üye
    tskler cok güzel bir paylaşım olmuş







+ Yorum Gönder
5 üzerinden | Toplam : 0 kişi